新的無線技術的涌現以及它們在第四代通信標準中的融合迫使人們使用多標準多頻段無線電,因此軟件無線電(software defined radio- SDR)將在未來無線電結構中起著一個關鍵的作用。SDR 只采用一個硬件前置端,但可以通過調用不同的軟件算法來改變它的工作頻率,所占據的帶寬以及所遵守的不同的無線標準。這種方案能夠實現在現有標準和頻段之間經濟(inexpensive)高效的互操作性。
本文概述了SDR 的主要部分,著重突出了幾種接收機和發射機可能的實施方法。這些結構中有許多實際上是相當老的技術,由于數字信號處理器容量的巨大提高,這些技術已經是切實可行的了。 我們還介紹了這類器件的測量和表征方法。SDR 通常是同時工作在模擬和數字域中的,因此有必要采用混合域的設備來進行測量。
SDR 的概念首先體現在Mitola[1]于1995 年所作的研究中。在這個研究工作中,他建議創造了一個完全由軟件來調節的無線電,使得無線電可以根據若干通信方案而自動進行調節。這個概念展示在圖1 中。

圖1、在文獻[1]中所介紹的軟件無線電常見的實施方法。一個入射到天線端口的信號通過環行器按規定路線被送至低噪聲放大器(LNA),隨后進行數字化處理。采用數字信號處理器(DSP)可以完成若干種調制格式和介入模式的解調和編碼。而發射鏈路則采用相反的過程:基帶信號是在DSP 模塊中產生和向上變頻的,在通過環行器和天線之前,被轉化為模擬波形,進行放大及帶通濾波。(來源于文獻[13],經許可使用。)
SDR 前置端由在大多數接收發射機中所使用的標準子系統組成:調制器和解調器,頻率轉換器,功率放大器(PA),以及低噪聲放大器(LNA)。然而,調制和編碼以及工作頻率則是由軟件來控制的。這樣的無線電一般都是依賴于數字信號處理器(DSP)來實現其靈活性的。SDR 可以根據傳輸的條件進行自我調節, 從而將空氣界面中所存在的其它信號產生的干擾減到最小程度。這種系統的實施要求能夠用軟件從低頻到高頻進行頻譜掃描。這個概念已經推動了許多研究者們對Mitola 在文獻[2]所提出的認知無線電(Cognitive radio-CR)這一構想進行研究,其中,無線電通過優化載波頻率,選擇調制方案和無線電標準進行自我調節來適應所處的空氣界面條件,從而在給定的條件下將干擾減到最小并且保持通信的暢通。
CR 技術最有前途的應用之一是通過使用機會性無線電(Opportunistic radio)來提高頻譜占有率,在這里,無線電將利用某個時刻未被其它無線電系統所占用的頻譜。為了能夠實施這個理想的解決方案,無線電應當能看到并且了解在特定時刻下完整的頻譜或通信狀態。
SDR 概念背后的動機不僅僅具有將前置端進行調適來同時工作在任何調制模式,信道帶寬或載波頻率下的高度靈活性,而且通過使用全數字系統還可能節省成本。
在本文中,我們首先對SDR 接收機前置端的若干結構進行一個簡單的綜述。然后,我們介紹了可能用于發射機前置端的結構。我們還討論了可以用來提高放大器效率的方法。在“軟件無線電測量方法”一節中,我們介紹了市面上存在的可以對這種接收發射機進行表征的儀器。最后,我們對這些研究工作進行了總結,并且從我們的觀點出發找出最可能的解決方案。
軟件無線電接收機的結構
在這一節中,我們對有可能用于SDR 接收機的若干個前置端結構作了一個綜述。這個綜述主要是在參考了文獻[4]和[5]的基礎上完成的。
第一種結構 [ 圖2(a) ] 是眾所周知的超外差接收機,其中,由天線接收到的信號被兩個下變頻混頻器轉換到基帶,進行帶通濾波及放大。基帶信號被轉化到可以進行處理的數字域內。由于從射頻到中頻是第一個混頻過程,在混頻器前必須使用鏡像抑制濾波器。目前,這種結構大多數用在較高的射頻頻段和毫米波頻段的設計中[6],[7],例如點對點的無線鏈接。在這些應用中,我們接下來將要討論的方案并不實用。實際上,超外差式接收機在用于SDR 時存在著許多實質性的問題。一般來說,會涉及許多制造技術,這使得人們很難實現全部元件的在片集成。同樣,它們通常被設計用于一個特定的信道(在一個特定的無線標準中)。這便阻止了將接收頻段進行擴展以便用于具有不同調制格式和帶寬占據的信號之中。因此,超外差式結構由于在多頻段接收時的擴展很復雜,因而,其在SDR 接收機中的應用并不令人感興趣。
另一種方法是如圖2(b)所示的零中頻接收機[8],[9],這是一個簡化版超外差結構。與前一種結構一樣,整個接收機的射頻頻段由帶通濾波器來選擇,并且由低噪聲放大器加以放大。隨后與混頻器直接向下變頻到直流,并且由模數轉換器(ADC)轉化到數字域。與外差結構相比,這種方法明顯地減少了模擬元件的數量,并且其允許使用的濾波器沒有像鏡像抑制濾波器要求得那么嚴格。因此,這種結構可以有高的集成度,使其成為在文獻[5]中所介紹的多頻段接收機和文獻[10]及[11]所描述的完整的接收機中常用的結構。然而,由于元件的性能要求,有些元件很難設計出來。同樣,將信號直接轉換到直流會產生一些問題,如直流偏移(offset)[12]。還有其它一些問題是與直流附近的二階交調產物相關的,并且,因為混頻器的輸出是基帶信號,很容易遭到混頻器大的閃爍噪聲的破壞[13]。它的優勢使其成為近來無線電接收機中最常使用的結構。

圖2、(a)一個超外差接收機結構,其中射頻信號被接收,濾波,放大,向下變頻到中頻頻率,然后再次濾波和放大。然后,信號由正交解調器轉換到基帶,在每個路徑(I 和Q)進行濾波,放大,隨后轉換到數字域。(b)一個零中頻結構,其中射頻信號被濾波,放大,由正交解調器直接轉換到基帶。隨后,信號被濾波,放大以及進行數字化轉換。(c)一個帶通采樣接收機,在這個結構中,信號被濾波,放大,由采樣-和-保持電路進行采樣,而采樣-和-保持電路通常是模數轉換器的一部分。信號被向下混頻到第一個奈奎斯特區,由模數轉換器進行數字化轉換,并在數字域進行處理。ADC:模數轉化器,BPF:帶通濾波器,FIR:有限脈沖響應濾波器,I:同相分量,LNA:低噪聲放大器,LO:本振源,LPF:低通濾波器,Q:正交分量;VGA:可變增益放大器。
與零中頻結構類似的是低中頻接收機[14],在這個接收機中,射頻信號被向下變頻到非零的較低的或中等的中頻信號,而不是直接變頻到直流。在這種情況下,一個射頻帶通濾波器被用于入射信號,隨后將信號進行放大。這個信號通過一個性能比較強健的模數轉換器轉換到數字域,從而可以使用DSP 來進行數字濾波以選通信道并消除正交解調器中同相正交(I/Q)失衡的問題。這個結構仍然允許有較高的集成度,沒有零中頻結構所存在問題的困擾,這是因為所需要的信號不在直流附近。然而,在這個結構中,鏡像頻率問題又再次被引入,并且由于需要較高的轉換速率,從而提高了模數轉換器的功耗。
最后,以前所介紹方法的替代方案是帶通采樣接收機[15],[16],見圖2(c)。在這個結構中,接收到的信號由射頻帶通濾波器進行濾波,這個濾波器可以是調諧濾波器或一個濾波器組。這個信號經過寬帶低噪聲放大器進行放大。由一個高采樣率的模數轉換器對信號進行采樣,并將其轉換到數字域,然后進行數字處理。這種結構是基于這樣一個事實基礎之上的,即無需進行任何向下變頻便可以將模數轉換器中的采樣電路和保持電路從直流 到輸入的模擬信號帶寬之間的能量折疊進入第一個奈奎斯特區[0,fs/2]。 這個結構利用了采樣和保持電路的一些優點。正如在文獻[16]中所描述的,有可能根據下列關系式來準確地得到由此而生成的中頻頻率fIF
如果為
(1)
其中,fc 是載波頻率,fs 是采樣頻率,fix(a)是截取參數a 和參數b 的小數部分后所得到的值,rem(a,b)是a 除以b 的余數。
在這種情況下,射頻帶通信號濾波器起著一個重要的作用,因為它必須將所期望頻段的奈奎斯特區以外所有的信號能量(基本上是噪聲)降低,否則,它們會與信號相混疊。如果不進行濾波,在所要求的奈奎斯特區外的信號能量(噪聲)將與所期望的信號一起被折回進入第一個奈奎斯特區,從而產生信噪比的劣化。這可由下式給出
(2)
其中,S 代表著所期望信號的功率,Ni和N0 分別是在頻段內和頻段外的噪聲,n 是混疊奈奎斯特區的數量。
這種方法的好處是所需的采樣頻率和隨后的處理速度是與信號帶寬而不是與載波頻率成正比的。這便減少了元件的數量。
然而,還存在一些關鍵性的要求。例如,采樣和保持電路(通常在模數轉換器內)的模擬輸入信號的帶寬必須要將射頻載波頻率包含在內,考慮到現代模數轉換器的采樣率,這便會成為一個很嚴重的問題。時鐘抖動也同樣是一個問題。還有,要求進行射頻帶通濾波以避免信號的交疊。
其它建議用于SDR 接收機的結構包括采用基于離散時間模擬信號處理的射頻信號直接采樣技術來接收信號,如在文獻[17]和[18]中所開發出來的結構。這些方法依然處于極不成熟的階段,但由于它們在實施可重構接收機時具有的潛在的效率,人們還是應當對此進行深入研究的。
軟件無線電發射機的結構
前置端
在這一節中,我們討論了若干個可能用于SDR 系統的發射機結構。正如我們已經了解到的,一個發射機并不僅僅是功率放大器,而且還有其它各種不同的電路元件,統稱為前置端。功率放大器的設計是發射機設計中最具有挑戰性的,它對無線系統的覆蓋面積,產品成本和功耗有很大的影響。這里,我們從對完整的發射機結構的分析開始,在接下來的章節中,要討論功率放大器,因為它是與SDR 相關的。這個綜述主要是在文獻[19]的基礎上撰寫的。
第一個結構 [ 圖3(a)] 是一個通用超外差發射機,它是圖2(b)所示的超外差接收機的對偶系統。信號是在數字域內產生的,隨后由簡單的采樣數模轉換器(DAC)轉化到模擬域。信號在中頻下進行調制,此時進行放大和濾波以消除在調制過程中所生成的諧波。最后,采用本振源(LO2)將信號向上變頻為射頻信號,通過濾波來剔除不期望出現的鏡像邊帶,由射頻放大器進行放大并饋入發射天線。I/Q 調制是在中頻下進行的,這意味著硬件元件的設計比起采用射頻調制要容易一些。最后,整體增益是在中頻下控制的,此時,比較容易制作高質量可變增益放大器。然而,和接收機一樣,這樣一個結構有許多問題。因此,這個結構主要是用于微波點對點無線鏈接,如用于回傳通信[6],[7], 當然還有上面所提到的無線電發射機領域。 電路的數量和低的集成度,以及功率放大器所要求的線性度,加上難以實施的多模式操作通常會阻礙超外差發射機在SDR 中的應用。
圖3(b)展示了一個直接轉換發射機的方框圖[20],[21],這是一個簡化版超外差前置端。和最后那個例子一樣,它使用了兩個數模轉換器來將基帶數字化的I,Q信號轉化到模擬域。隨后的低通濾波器消除了奈奎斯特鏡像信號,從而改善了本底噪聲(背景噪聲)。這些信號是通過使用一個高性能I/Q 調制器在射頻處直接進行調制的。隨后,信號由頻率中心在所期望的輸出頻率處的帶通濾波器進行濾波,并由功率放大器來加以放大。

圖3、(a)一個超外差發射機結構,其中I/Q 數字信號被轉換到模擬域,經過低通濾波,在中頻上進行調制。然后,信號被放大,濾波,及向上變頻到射頻頻率,然后在發射之前再進行濾波和放大。(b)一個直接轉換結構,其中I/Q 數字信號經由數模轉換器傳遞到模擬域,經過濾波,然后直接在所要求的射頻頻率上進行調制。在這之后,射頻信號經過濾波,并且由功率放大器放大。BPF 帶通濾波器,DAC:數模轉換器,DPA:驅動功率放大器,I:同相分量,LO:本振源,LPF:低通濾波器,PA:功率放大器,Q:正交分量;
在一個頻率捷變系統中,信號鏈路的設計必須使得載波頻率可以在一個定義好的頻段內合成,這便會要求使用一個寬帶后調制器或可調后諧調制器的濾波操作來消除抑制帶外噪聲。因此,鑒于被稱為“注入牽引”(injection pulling)現象的產生[22],在功率放大器輸出端口的強信號可能會耦合到LO2 上。因此,LO2 的頻率會被牽引而偏離所要求的頻率值。
即使這種結構減少了所要求電路的數量,并允許進行高度的集成,它還是存在一些缺點的,如可能的載波泄漏和相位與增益的失配。 在射頻頻段也許需要進行增益控制,這種結構同樣要求功率放大器具有好的線性度。通過精心的設計,這些發射機可以用于SDR,并且隨著集成技術的發展,我們已經見證了超外差到直接轉換發射機結構的快速過渡。
功率放大器部分
在前面幾個結構中,所使用的射頻功率放大器(功率放大器模塊)是A 類,AB 類或B 類,當工作在壓縮區時,它們展示出最高的效率,而工作在開關模式時,則采用D 類,E 類或F 類[23]。后一種高效率功率放大器工作在非線性很強的模式下。因此,它們只能放大恒定包絡調制信號,如用于全球移動通信系統(GSM)的接入格式中。寬帶碼分多址接入(W-CDMA)和正交頻分復用(OFDM)這些新型接入模式中使用的正交幅值調制類型(QAM)具有很高的峰均功率比(PAPR)。防止放大器進入壓縮狀態的標準做法是在回退模式下(Back- off)進行操作,即減小輸入功率直到功率放大器不再被驅動進入壓縮狀態。遺憾的是,這極大地降低了效率,特別是對于高PAPR 信號來說。人們已經建議使用若干線性化技術,如反饋,前饋,或數字預失真[23],[24],并對它們進行了評估,但這些技術還沒有廣泛地應用于全集成化功率放大器中。
人們對如何有效地發射一個高PAPR 信號這個問題已經進行了若干年的深入研究。為了提高效率,人們正在對幾年前所建議的一種Kahn 技術[25]進行研究以便將其用于新的發射機結構中。
由Kahn 所建議的包絡分離和恢復(EER)技術是對極度非線性化,效率極高的發射機進行線性化的一種方法。在這些系統中,通過對射頻輸出功率放大器的電源電壓進行動態調節來將信號的幅值恢復到相位調制信號表征狀態。圖4 展示了一個傳統的EER 結構。雖然這是一個很吸引人的概念,但實際實施起來卻是非常具有挑戰性的。這個挑戰主要在于要設計出一個完美的延遲線,一個準確的限制器,一個允許高PAPR 值和大帶寬的經過改進的偏置電路,以及進行相位調制信號放大的開關/飽和射頻功率放大器所能覆蓋的帶寬[30]。

圖4、Kahn 放大器部分的方框圖,其中射頻輸入信號被分離進入兩個分支。一個分支是經過了延遲的帶有相位信息的恒定包絡射頻載波(是由一個限制器和一條延遲線組成的)。另一個分支承載著要進行放大的信號包絡的幅值信息(Bias Ckt 這個分支),并且隨后饋入射頻功率放大器的漏極電壓端。
由于這些原因,在現代化的設計中,隨著DSP 容量極大的提高,采用數字方法來實施包絡檢測器,限制器和延遲線(時延)是非常有利的。這種數字版本的EER發射機被用于極坐標發射機中,我們將在后面對此進行說明。
一個很有遠見的解決方案是采用脈寬調制來生成我們接下來將要介紹的所謂全數字式發射機。由于這種可賦予認知能力的新型SDR 結構的實施,而使得這種全數字化的方法變得非常重要。由于這種方法允許使用具有極高效率的發射機,如圖5 所示的S 類功率大器,因此它能夠使得直流功耗變得很低。
此外,隨著數字信號處理器速度的提高,為了開發全數字化發射機,我們預見DSP 可以在射頻頻率提供射頻信號算法(特別是對開關放大器來說,其中它的輸入是數字脈寬調制信號,輸出是射頻調制信號)。
如圖5 所示,一個S 類放大器[26]可以是一個純粹的開關放大器,后面再跟上一個低通濾波器(來產生包絡信號)或一個帶通濾波器(來產生射頻信號)。這種理想化的放大器沒有直流功耗,這是因為輸出電壓和電流交替為零,因此,在理想狀態下,效率可以達到100%。在現實情況下,S 類放大器在進行信號過渡時,將會消耗一些功率。這是因為在實際器件中,互連元件和寄生電容會產生一些損耗,從而會產生有限的開關時間。輸入脈寬調制信號可以由數字信號處理器來產生,不再需要寬帶數模轉換器,從而有可能降低成本。

圖5、一個S 類功率放大器的簡化電路,其中通過數字方式產生的脈寬調制信號被施加到它的輸入端。這個電路經過低通或帶通濾波后將會產生一個基帶信號或一個射頻信號。
遺憾的是,如果觀察一下現實世界的情況,現在還不可能設計出一個工作在很高頻率下的S 類高效率放大器。盡管如此,人們正在這個領域中做出著一些成果[27]。人們正試圖用Sigma-Delta 調制器進行類似的嘗試[28],[29]。
由于這個原因,采用在新結構中廣泛使用的開關放大器便是基于極坐標發射機架構中包絡消除和恢復這個理論基礎之上的[30],[31],在這個結構中對包絡信息進行了調制。因此,所需的帶寬要小得多,這是因為只有基帶信號才被放大。這便可以允許使用高效率的S 類放大器,見圖6。

圖6、極坐標發射機的方框圖。信號是由DSP 產生的,并被分為包絡分量和恒定包絡相位調制分量。脈寬調制包絡信號由S 類調制器進行放大,隨后經過低通濾波來產生模擬信號包絡,并被提供作為射頻功率放大器的偏置。恒定包絡相位調制分量由混合器向上變頻到射頻頻率,并由射頻功率放大器進行放大。
如果我們考慮一下圖6 的電路,S 類放大器僅僅是放大了輸入信號的包絡(通過數字信號處理器DSP 在數字域中進行檢測)。在這種情況下,S 類放大器僅被用來改變射頻高功率放大器的偏置電壓,Vdd(t)。 在相位路徑上,恒定包絡相位調制信號是在DSP 中產生的,隨后向上變頻到射頻頻率,并饋入射頻功率放大器。這個射頻功率放大器總是飽和的,從而具有很高的效率。盡管如此,這種設計的主要關注點是基帶包絡路徑和射頻路徑的時間對準(time alignment)問題。這可以在數字域中通過使用DSP 的使用來進行補償。
其它建議的結構包括基于Doherty[32],[33]和異相技術[34]的放大器。Doherty 結構通過四分之一波長線段或網絡,由兩個相同容量的功率放大器組合而成(一個偏置在B 類的載波功率放大器和一個偏置在C 類的峰值功率放大器)。在現代化的實施方案中,DSP 可以被用來通過控制施加到兩個功率放大器的驅動和偏置來改善Doherty 放大器的性能。對于理想的B 類放大器,在高PAPR 值信號下的平均效率可以高達70%。
異相設計,或者被稱為采用非線性元件進行的線性放大(LINC)的方法,通過將兩個由不同的相位隨時間而變化的信號所驅動的功率放大器的輸出相合成而產生一個幅值調制信號。通過采用理想的B 類放大器,對于與前一種情況下的PAPR 值相同的信號,平均效率為50%。在文獻[19]中可以找到這些設計中更多的細節。
對于SDR 來說,Doherty 法和異相法在未來的探索研究中都是令人很感興趣的技術。這要歸因于這樣一個事實,即,特定的功率放大器部分效率的改善將使得整個發射機具有更高的效率。同樣,這個發射機結構還承諾可以在基于多標準和多頻段的信號下正確地工作。
軟件無線電實施方案的測試
在介紹了用于SDR 前置端的接收機和發射機的候選結構以后,我們下一步要致力于另一個重要的主題:SDR 系統的實驗和測試。這個討論的關鍵是混合域測試技術的概念,因為SDR 系統總是有一個處于模擬域的輸入,而另一個則是數字邏輯域。在SDR 概念中,主要思想是將模數/數模轉換器盡可能地推向靠近天線的地方,如圖1所示。因此,會有較少的信號存在于模擬域,數字信號測試的重要程度在傳統射頻系統表征中是無法體現的。
硬件
儀表工業[35],[37]已經開發了適用于SDR表征的各種儀器,例如可以同時工作在模擬域和數字域的混合信號示波器。這樣便可以使得模擬信號和數字信號在同一臺儀器上實現時間的同步。然而,混合信號示波器僅僅能提供非同步采樣功能。 這意味著,和傳統采樣示波器一樣,混合信號示波器是使用其內置時鐘來對數據進行采樣的。正如在文獻[38] 和[39]中所討論的, 當對SDR 器件(包括模數轉換器)進行測試時,傳輸函數相位和幅值的精準估測要求在輸入,輸出和時鐘信號之間進行相關采樣。如果這些信號是通過非同步方式進行采樣的話,那么就會產生足以完全劣化來自于SDR 的任何幅值和相位信息的頻譜泄漏。頻譜泄漏的出現是由于在進行必要的傅立葉變換時(DFT 或FFT),兩個信號不是共享同一個時域網格,因此,它們彼此之間是互不相關的。
混合信號示波器可能存在的其它問題包括,比如說,為了獲取行為模型所需的必要的內存空間。因為這些儀器通常會采用很高的采樣率,需要大量的點來獲得常用的具有低/中等符號率的調制信號。因此,這種類型的儀器無法全面表征一個完整的SDR 前置端。
儀表工業還提出了其它一些將若干儀器聯合起來的方法,包括邏輯分析儀,示波器,矢量信號分析儀或實時信號分析儀[40]-[42]。為了對一個SDR 發射機結構進行測試,這些儀器可以按照類似于圖7 中的配置進行構建來使用。通過使用參考信號,觸發信號,和標記(markers),人們可以在數字域和模擬域以及時域和頻域之間進行同步測量。采用這些系統所進行的典型測試,可以用來評估SDR 中發射鏈路和接收鏈路,這些測試包括信號鏈中的誤差向量幅度(EVM)以及鄰道功率比(ACPR)。

圖7、用于測試軟件無線電發射機的設備,其中若干個儀器被結合在一起使用。一個邏輯分析儀在數字信號處理器(DSP)的輸出端采集數字邏輯比特,在數模轉換(DAC)和低通濾波器(LPF)的信號重建之后,采用一臺示波器對模擬信號進行分析,一臺頻譜分析儀或矢量信號分析儀在正交調制器后或在信號放大之后獲取模擬射頻信號。
在文獻[39]中,作者討論了信號配時(signal timing )和同步化的要求,并且提出了一些解決方案,例如,在實驗激勵裝置中嵌入一個觸發信號。一些重要問題仍然有待解決,如混合信號儀器的校準過程。混合信號儀器中的模擬信道應當能夠理想地測量輸入端口的反射系數。應當用定向耦合器來對入射到被測元件的射頻信號提供一個基于波信號的阻抗失配校準表征。有了這些信息,就有可能將模擬輸入和數字輸出聯系起來,從而找到SDR 系統的傳輸函數,或者,甚至可以找到系統的完整的行為模型。人們有可能采用現成的元件和算法,比如文獻[43]中所討論的失配校正算法,來構建這樣一個儀器。然而,現在市面上還不存在一個完整的測試裝置。
通過這種混合信號測試設備,人們就有可能測量原先用于模擬前置端的品質因數,以及原先用于數字通信信號的品質因數。